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Abstract. The effects of a traveling, spatially periodic forcing are investigated in a system with axial
anisotropy, where oblique stripe patterns occur at threshold in the unforced case and where the forcing
wavenumber and the wavenumber of stripes are close to a 2 : 1 resonance. The forcing induces an interac-
tion between the two degenerate oblique stripe orientations and for larger forcing amplitudes rectangular
patterns are induced, which are dragged in phase by the forcing. With increasing forcing velocity a tran-
sition from a locked rectangular pattern to an unlocked superposition of a rectangular and oblique stripe
pattern takes place. In this transition regime, especially when the ratio between the wavenumber of the
forcing and that of the pattern deviates from the 2 : 1 ratio, surprisingly stable or long living complex
patterns, such as zig–zag patterns and patterns including domain walls are found. Even more surprising is
the observation, that such coherent structures propagate faster than the stripe forcing.

PACS. 47.20.-k Hydrodynamic stability – 47.54.+r Pattern selection – 89.75.Kd Patterns

1 Introduction

External forcing of patterns is a powerful method for in-
vestigations of the response behavior of nonlinear pat-
terns and of the inherently nonlinear mechanisms of self–
organization. The effect of spatially periodic forcing on
patterns has been investigated rather early in the context
of thermal convection [1] and electroconvection in nematic
liquid crystals [2,3]. Further on, the response of stationary
patterns with respect to static periodic forcing in one or
two spatial dimensions has been explored [2–9], as well
as temporal forcing of traveling waves in hydrodynam-
ics systems [10–12] and of temporally oscillating chemical
reactions [13,14]. Recently, this branch of nonlinear sci-
ence has been continued by a combination of spatial and
temporal forcing in model systems [15–17], and by the
introduction of light intensity modulation techniques in
chemical reactions [13–20] and in electroconvection in ne-
matic liquid crystals [21]. This suggests further interest-
ing applications of spatiotemporal forcing, one of which is
described in this work.

Here, the effects of a traveling, spatially periodic mod-
ulation of the control parameter,

M(x, t) = 2Ĝ cos[2(kmx− ν̂t)], (1)

are investigated in an anisotropic system, where oblique
stripe patterns occur at the primary instability. Exam-
ples for such a system are thermal- or electroconvection
in nematic liquid crystals [22–26]. In equation (1) Ĝ is the
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modulation amplitude, 2km is the modulation wavenum-
ber and ν̂ determines the phase velocity vp = ν̂/km of
the forcing. The effects of this forcing are analyzed in
terms of symmetry adapted amplitude equations close to
the threshold of the pattern forming instability.

The orientation of striped convection pattern in elec-
troconvection or thermal convection in planarly aligned
nematic liquid crystals may be either normal or oblique
to the preferred direction [22–26]. The oblique stripe pat-
tern at threshold can be written as follows [7,8,24]

u(x, y, z, t) = eiqcx
[
A1e

ipcy +A2e
−ipcy

]
U0(z) + c.c.,

(2)

where c.c. means complex conjugate, A1,2 are the com-
plex amplitudes and qOc = (±qc,±pc) is the wavenumber.
u(x, y, z, t) describes the physical variables, such as the
spatiotemporal variation of the velocity field and the tem-
perature modulation in convection or the optical birefrin-
gence of the pattern. U0 includes the variation of those
fields across the fluid layer and for a vanishing wavenum-
ber pc = 0 the expression in equation (2) describes
so–called normal stripes. Other anisotropic systems, such
as for inclined layer convection [27–29] or Taylor-vortex
flow [30–34], may be susceptible to similar effects as de-
scribed in this work.

The case of a static and spatially resonant forcing with
a modulation wave vector 2km = (2km, 0) = (2qc+2q̂d, 0)
nearly twice the x–component qc of the wave vector char-
acterizing the oblique rolls qOc = (±qc,±pc) has been stud-
ied in previous works [7,8]. Here q̂d is the detuning and it
has been found that spatially periodic forcing of the two
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degenerated oblique stripe states leads either to a rectan-
gular pattern or to a superposition of a rectangular and
an oblique stripe pattern. Here we investigate how the
traveling stripe forcing given by equation (1) changes the
bifurcation scenario of oblique stripes.

In Section 2 we describe equations for the two ampli-
tudes A1,2 of both oblique stripe states and the change of
the threshold induced by the traveling stripe modulation is
determined in Section 3. Two types of nonlinear solutions
are calculated analytically in Section 4 and their linear sta-
bility properties are given in Section 5. A selected number
of numerical solutions are presented in Section 6 and the
article is finished with concluding remarks in Section 7.

2 Amplitude equations

In anisotropic systems, such as electroconvection (EHC)
and Rayleigh-Bénard convection (RBC) in planarly
aligned nematic liquid crystals, the concept of amplitude
equations [35–37] is a very successful approach for the
description of patterns close to their onset [24,26]. This
approach relies on the basic assumption that the spatial
variation of the amplitude A(x, y, t) of a periodic pattern
is small on the scale of the wavelength 2π/qc or 2π/pc of
the pattern.

In the absence of external spatial modulations, the cou-
pled equations for the amplitudes A1 and A2 of the two
degenerated oblique stripe–states have been already de-
rived in reference [24]. Generalizing these equations in a
manner that includes the traveling and spatially periodic
near 2 : 1 resonant forcing of the control parameter, the
following equations for the two amplitudes are obtained:

τ0∂tA1 = εA1 + (ξ21∂
2
x + ξ22∂

2
y + 2aξ1ξ2∂x∂y)A1

+Ge2i(q̂dx−ν̂t)A∗
2 − g1

(|A1|2 + b|A2|2
)
A1,

(3a)

τ0∂tA2 = εA2 + (ξ21∂
2
x + ξ22∂

2
y − 2aξ1ξ2∂x∂y)A2

+Ge2i(q̂dx−ν̂t)A∗
1 − g1

(|A2|2 + b|A1|2
)
A2.

(3b)

ε measures the distance from the threshold of oblique rolls
and the frequency ν̂ is assumed to be of the order of the
inverse relaxation time τ0 of the pattern. ξ1 and ξ2 are the
coherence lengths in x–direction and y–direction, respec-
tively. The parameter a is a measure how the principal
axes of the neutral surface are oriented with respect to
the x and y–axis. The coefficient g1 determines the am-
plitude of a stripe solution and together with the nonlin-
ear interaction coefficient b, which is in most cases larger
than one, it determines the amplitudes of rectangles and
more complex patterns. The modulation function given
by equation (1) breaks the translational symmetry along
the x–axis, but one has still a translational invariance
along the y–axis and invariance with respect to reflec-
tions y → −y.

A rescaling of time and space coordinates, given by
t = τ0t

′, x = ξ1x
′, y = ξ2y

′, yields a rescaled detuning

qd = q̂dξ1 and frequency ν = ν̂τ0. Together with a rescal-
ing of the amplitudes by Ai = A′

i/
√
g1 (i = 1, 2) this

results in the following two coupled equations:

∂t′A
′
1 = εA′

1 + (∂2
x′ + ∂2

y′ + 2a∂x′∂y′)A′
1

+Ge2i(qdx
′−νt′)(A′

2)
∗ − (| A′

1 |2 +b | A′
2 |2)A′

1,
(4a)

∂t′A
′
2 = εA′

2 + (∂2
x′ + ∂2

y′ − 2a∂x′∂y′)A′
2

+Ge2i(qdx
′−νt′)(A′

1)
∗ − (| A′

2 |2 +b | A′
1 |2)A′

2.
(4b)

These coupled amplitude equations for a traveling spa-
tially periodic 2 : 1 forcing are of a similar form as the
equations given in references [7,8].

In order to compare the results gained from the
rescaled equations with real experiments, one has to de-
termine experimentally the numerical values of τ0 and ξ1,2
of the considered system. A dimensionless velocity v′ ob-
tained for instance for a domain wall etc. in terms of equa-
tions (4) translates into the velocity v = ξ1/τ0 v

′ in the
real space of the periodic pattern u(x, y, t). This is impor-
tant for comparison with real patterns. In Section 6 the
solutions are also given in terms of the real field u, which
are determined by the amplitudes A1,2 via equation (2)
and for the related transformations we use in this work
for reasons of simplicity τ0 = ξ1,2 = g1 = 1, especially in
Section 6.

The frequency ν and the detuning qd in the exponential
function of the forcing term may be removed by the sim-
ple transformation A′

1,2 = Ā1,2 exp [i(qdx′ − νt′)], which
transfers both parameters into the linear coefficients of
the equation. Then one obtains the two coupled equations

∂t′Ā1 = [ε+ iν + (iqd + ∂x′)2 + ∂2
y′ + 2a(iqd + ∂x′)∂y′ ]Ā1

−(|Ā1|2 + b|Ā2|2)Ā1 +GĀ∗
2, (5a)

∂t′Ā2 = [ε+ iν + (iqd + ∂x′)2 + ∂2
y′ − 2a(iqd + ∂x′)∂y′ ]Ā2

−(|Ā2|2 + b|Ā1|2)Ā2 +GĀ∗
1, (5b)

which are investigated in this work.

3 Threshold

At first we investigate, how the threshold is modified by a
traveling stripe forcing as given by equation (1). For this
purpose we solve the linear parts of equations (5) by the
ansatz

Ā1 = F1 e
σt′+i(Qx′+Py′), Ā2 = F2 e

σ∗t′−i(Qx′+Py′) (6)

with constant and complex coefficients F1 and F2. The
solubility condition of the resulting two linear and homo-
geneous equations for F1,2 gives the dispersion relation

σ = ε−A±
√
B2 +G2 − ν2 − 2iνB (7)
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wherein the two abbreviations

A = q2d +Q2 + P 2 + 2aqdP, (8a)
B = 2Q(qd + aP ) (8b)

are used. From the neutral stability condition Re(σ) = 0
one obtains the expression for the neutral surface ε0(Q,P )

ε0(Q,P ) = A−
√
M̃ +

√
M̃2 + ν2B2

with M̃ =
B2 +G2 − ν2

2
, (9)

below which the basic state is linearly stable. The imagi-
nary part of the dispersion relation at the surface ε0(Q,P )
determines the frequency ω0 = Im(σ) with

ω0 = − νB
A− ε

. (10)

Case G 2 > ν2

The first partial derivative of ε0(Q,P ) as given by equa-
tion (9) vanishes at its extremal value at Q = 0 and it may
be factorized as follows, ∂Qε0 = Q f(Q,P ). The neutral
surface has a minimum at Q = 0 if its second derivative
∂2ε0/∂Q

2|Q=0 is positive, which happens in some range
forG beyond |ν| as described below. In this case forQc = 0
the neutral curve with respect to P is described by

ε0(P ) = q2d + P 2 + 2aqdP −
√
G2 − ν2 (11)

and takes its minimum at Pc = −aqd. So the threshold for
G > ν and Qc = 0 is finally given by

εc(G, qd, ν) = q2d(1 − a2) −
√
G2 − ν2. (12)

However, the second derivative ∂2ε0/∂Q
2|Q=0,P=−aqd

is
only positive if the inequality

(G2 − ν2)3/2

G2
> 2q2d(1 − a2)2 (13)

is fulfilled. The value GL at the point L in Figures 1–3 is
determined for the case that left hand side and right hand
side of equation (13) are equal. As long as the minimum
of the neutral curve is located at Qc = 0, the correspond-
ing frequency ωc vanishes according to equation (10) and
equation (8b).

However, Q = 0 does not correspond always to the
minimum of the neutral surface. Below GL, which is de-
termined by equation (13), one has a negative second
derivative ∂2ε0(Q,P )/∂Q2|Q=0,P=−aqd

and the critical
wavenumber Qc �= 0 is nonvanishing. It has to be de-
termined by a numerical minimization of ε0(Q,P ) with
respect to Q and P . For G → GL and G < GL the crit-
ical wavenumber Qc → 0 tends continuously to zero and
therefore the point L at GL in Figures 1–3 is a so–called
Lifshitz-point [22,23,38].

Fig. 1. This figure includes as a function of the modulation
amplitude G the threshold εc in part (c), the critical wavenum-
bers Qc and Pc in part (b) and the frequency ωc in part (a)
for the parameter value a = 0.3, a detuning qd = 0.2 and a
driving frequency ν = 0.6. The dashed line in part (c) de-
scribes the analytical expression for the threshold εc(Q = 0)
as given by equation (12) for G2 > ν2 and by equation (15)
for G2 < ν2, whereby the dashed lines in part (a) and (b)
represent the respective analytical formulas for the position
of the extreme value at Pc = −aqd (Qc = 0) and the criti-
cal frequency ωc = ±√

ν2 − G2. The two dash–dotted lines in
part (b) describe Qc as obtained by a numerical search for the
extremum of the expression given by equation (9). The solid
lines in part (b) and (c) represent the corresponding values
of Pc and εc. The line types of the two numerical branches
of ωc (dash–dotted lines in a)) correspond to the two branches
of Qc. The dotted line separates the two regions G < ν and
G > ν.

Case G 2 < ν2

In this range the imaginary part of σ(Q,P ) is always finite
and for Q = 0 the dispersion relation is of the simple form

σ = ε− q2d − P 2 − 2aqdP ± i
√
ν2 −G2. (14)

The real part of this expression for σ becomes maximal at
Pc = −aqd and for this value the neutral surface ε0(Q,P )
following from Re(σ) = 0 takes its minimum at

εc(Q = 0, Pc = −aqd) = q2d(1 − a2). (15)

The nonvanishing frequency at threshold is

ωc = ±
√
ν2 −G2. (16)

However, similar as in the range |ν| < G < GL above,
the neutral surface takes in the whole range G2 < ν2 its
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Fig. 2. The nonlinear analytical MREC solution given by
equation (19) and the MOREC solution given by equation (21)
are linearly stable for the parameter values a = 0.5, b = 3,
qd = 0.2, ν = 0.6 in the range denoted by MREC and MOREC,
respectively. Each of them becomes linearly unstable along the
respective dash–dotted line. The solid line describes the thresh-
old εc. The dotted line separates the two regions G > ν and
G < ν and the dashed curve marks the continuous transition
between these two types of nonlinear solutions.

Fig. 3. Stability map for MREC and MOREC solutions in the
case qd = 0 for a = 0.5, b = 3 and ν = 0.4. The solid line shows
the threshold εc and the dotted line separates the two regions
G > ν and G < ν. For ε > 0 and G > |ν| along the dashed line,
given by equation (22), a continuous transition between the
MREC and MOREC solutions takes place. In the present case
for qd = 0 the transition coincides with the stability boundary
for MREC. Below the dash–dotted line the MOREC solutions
become linearly unstable with respect to small perturbations.

minimum at a finite value of Qc �= 0 and Pc �= −aqd,
where both are obtained by a numerical determination of
the minimum of the expression in equation (9).

Qc and Pc as well as εc and ωc are plotted as functions
of G in Figure 1 and Qc tends continuously to zero for
G → GL, as described above. The G-dependence of the
threshold and of the critical frequency ωc at Q = 0, cf.
equations (15) and (16), have been included for compari-
son and are described by the dashed lines.

The numerical results given in Figure 1 suggest Pc � 0
and εc � 0 for small values of the modulation ampli-
tude G. In this case one approximately gets from the dis-
persion relation in equation (7) ωc � ±ν for the critical
frequency and Qc � ±qd for the corresponding critical
wave vector in x-direction, which are described in Fig-
ure 1 by the dash-dotted lines. At threshold, the pattern
propagates with a velocity v ∝ ν − |ωc|, as discussed in
more detail in Section 4. In the limit G → 0 this velocity
vanishes and the solutions of equation (5) describe sta-
tionary stripes in y–direction (Pc = 0) with a wave vector
that is shifted by qd.

4 Analytical expressions for two nonlinear
solutions

Analytical solutions of the nonlinear equations (5) are
traveling waves as given by

Ā1 = F1 e
i(Qx′+Py′−Ωt′)−iψ,

Ā2 = F2 e
−i(Qx′+Py′−Ωt′). (17)

The two real and constant amplitudes F1,2, the nonlinear
frequency Ω and the relative phase shift ψ are determined
by the real parts and the imaginary parts of the two equa-
tions

[ε− (qd +Q)2 − P 2 − 2a(qd +Q)P + i(ν +Ω)]F1

+G eiψF2 − F 3
1 − bF 2

2F1 = 0, (18a)

[ε− (qd −Q)2 − P 2 − 2a(qd −Q)P + i(ν −Ω)]F2

+G eiψF1 − F 3
2 − bF 2

1F2 = 0. (18b)

In the case Q = 0 and P = −aqd these equations may
be solved analytically. In the range G2 > ν2 one has a
analytical solution with equal amplitudes |F1| = |F2| and
vanishing frequency Ω,

F 2
1 = F 2

2 =
ε̃+

√
G2 − ν2

1 + b
, Ω = 0,

sinψ = − ν

G
, (19)

where the abbreviation ε̃ = ε− q2d(1− a2) has been intro-
duced.

With unscaled coordinates this solution describes a
moving rectangular pattern (MREC) in physical space

u ∝ F1 cos
(
kxx− ν̂t− ψ

2

)
cos

(
kyy − ψ

2

)
Ũ0(z, qc, pc)

with kx = qc + q̂d, ky = pc − aq̂d, (20)

propagating with the phase velocity vp = ν̂/(qc + q̂d) in
x–direction that is identical with the phase velocity of the
forcing.
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Fig. 4. Snapshots of one component of u(x, y, t) and for
qd = 0. The left part shows a snapshot of MREC comoving
with the traveling stripe forcing and the right part shows one
for a MOREC solution. For MREC the further parameters are
a = 0.5, b = 3, ε = 0.1, ν = 0.4, G = 0.5 and for MOREC two
parameters were changed to G = 0.6 and ε = 0.6. For both
cases pc = qc/4 has been used.

The second analytical solution has unequal amplitudes
F1 �= F2 and a finite frequency Ω with

F 2
1,2 =

ε̃

2
(1 ± H̃), Ω = −H̃ν,

sinψ =
ν

G

√
1 − H̃2,

and H̃ =

√

1 − 4G2

4ν2 + ε̃2(1 − b)2
. (21)

H̃ is always real for G < ν. In the range G > ν it is only
real if

ε ≥ q2d(1 − a2) +
2
√
G2 − ν2

|1 − b| (22)

holds. This solution with unequal amplitudes F1 �= F2 de-
scribes in physical space a superposition of a moving rect-
angular and a moving oblique stripe pattern (MOREC),
as can be seen by the representation in terms of u(x, y, t)

u ∝ Ũ0(z)
[
2F2cos

(
kxx− ν̂t− ψ

2

)
cos

(
kyy − Ω̂t− ψ

2

)

+ (F1 − F2) cos
(
kxx+ kyy − (ν̂ + Ω̂)t+ ψ

)]
, (23)

with Ω = Ω̂τ0. The first part in this expression corre-
sponds to the rectangular contribution, which propagates
in x–direction with the same velocity as the traveling
stripe forcing, vx = ν̂/(qc + q̂d). However, it propa-
gates also in y–direction with a different velocity vy =
Ω̂/(pc−aq̂d), which tends to zero at the continuous transi-
tion line between MREC and MOREC solutions, i.e. along
the dashed line in Figures 2 and 3, where both amplitudes
become equal, F1 = F2. The second part in equation (23),
the oblique stripe contribution, propagates in an oblique
direction. However, close to the transition line between
the MREC and MOREC solution the amplitude of the
oblique stripe part of the MOREC solution tends to zero
and the propagation in an oblique direction becomes in
some sense irrelevant.

Typical snapshots of the MREC and the MOREC so-
lution are shown in Figure 4 for qd = 0 and pc = qc/4.

In the limit of small values of G→ 0, the MOREC so-
lution becomes an oblique stripe pattern, where the prop-
agation velocity to an oblique direction tends to zero, as
indicated by the formula in equation (23) and the ana-
lytical expression for Ω given in equation (21). Roughly
speaking, the MREC solutions are locked to the traveling
stripe modulation and the MOREC solutions interpolates
between these locked solutions and the unlocked ones in
the limit G→ 0.

5 Linear stability of MREC and MOREC
solutions

In certain parameter ranges, the nonlinear analytical so-
lutions as given in Section 4 are linearly unstable with re-
spect to small perturbations. The stable regime depends
on the modulation amplitude, the control parameter, the
wavenumber detuning and the propagation velocity of
the forcing, as shown in this section. For this purpose
the ansatz

Ā1 = (F1 + vA(x′, y′, t′)) ei(Qx
′+Py′−Ωt′)−iψ,

Ā2 = (F2 + vB(x′, y′, t′)) e−i(Qx
′+Py′−Ωt′), (24)

for any small perturbations with |vA,B| � |F1,2| is chosen
and equations (5) are linearized with respect to vA and vB .
The resulting coupled equations for both fields are solved
by the ansatz

vA = v1 e
σt′+i(Kx′+Ly′) + v2 e

σ∗t′−i(Kx′+Ly′),

vB = v3 e
σt′+i(Kx′+Ly′) + v4 e

σ∗t′−i(Kx′+Ly′) (25)

with constant amplitudes vi (i = 1, 2, 3, 4). The resulting
set of linear and homogeneous equations has solutions for
nonvanishing amplitudes vi only if the determinant of the
coefficient matrix vanishes. This solubility condition gives
an equation for the eigenvalue σ that may be determined
mainly numerically. The stability boundary of the respec-
tive solution is then given by the condition Re(σ) = 0
after an extremalization with respect to K and L.

Case qd �= 0

For a finite wavenumber detuning qd �= 0 there are three
major ranges beyond the threshold (solid line) in Figure 2.
For G > GL one has above threshold stable moving rect-
angles (MREC) in a finite ε–range, which is bounded from
above by the lower dash–dotted line. The width of this
wedge like domain increases with G.

Beyond the upper dash–dotted line in Figure 2
MOREC solutions are linearly stable. In the limit G→ 0
the dash-dotted line terminates at the control parame-
ter value ε = q2d(1 − a2)b/|1 − b| for b < 3/2 and at
ε = 3q2d(1 − a2) for b > 3/2, where both values of ε are
determined analytically. Between both dash–dotted lines
neither the MREC nor the MOREC are linearly stable. In
this range more complex solutions, corresponding to finite
values of Q, are preferred, as discussed in more detail in
Section 6.
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Limiting case qd = 0

The threshold in this limiting case is described by the solid
line in Figure 3. In a wide range G < |ν| the threshold
vanishes, i.e. εc = 0, and beyond the point L ( G > GL)
the threshold decreases according to equation (12) as a
function of the modulation amplitude G as described by
the expression

εc = −
√
G2 − ν2. (26)

However, in a finite range GL∗ < G < |ν| the threshold
becomes negative and the wavenumber Q minimizing the
threshold becomes finite. This is also the case in a small
range |ν| < G < GL. In both cases, at the point L∗ in
Figure 3 at GL∗ and at the point L at GL in the same
figure the wavenumber Q decreases continuously to zero
and therefore one has in addition to GL also at GL∗ a
Lifshitz–point.

The transition line between the two nonlinear solu-
tions MREC and MOREC is given by equation (22) and
it is described by the dashed line in Figure 3. It starts
at G = ν and ε = 0 and coincides in a wide range with
the upper linear stability limit for MREC solutions. The
dash–dotted line in the same figure is the linear stability
boundary for MOREC solutions. The solutions occurring
between the dash–dotted and the dashed line are similar
to the solutions found for the case qd �= 0 in the region II
of Figure 2.

6 Numerical simulations

Here we investigate the nonlinear differential equations (5)
by numerical simulations with a pseudo spectral method.
If not stated otherwise, the range in the x − y plane is a
square with periodic boundary conditions and with a edge
length of 40λ0, where λ0 = 2π/qc is the wavelength of the
pattern in x-direction, and ten grid points have been used
per λ0. We focus especially on the behavior of the solutions
in the parameter range where the analytical MREC and
MOREC solutions are linearly unstable.

6.1 Special case qd = 0

For a vanishing wavenumber detuning qd = 0 the MREC
and the MOREC solutions are linearly stable nearly ev-
erywhere in the ε − G plane, besides a small region near
G ∼ ν, as indicated by the stability diagram in Figure 3.
In Figure 4 snapshots of both solutions in their respec-
tive stable ranges are given in terms of a component of
the real field u(x, y, t), which is determined by the am-
plitudes A1,2 via equation (2) with the ratio qc/pc = 4.
The edge length of each section is nearly one third of the
total size of the system. The MREC solutions are locked
in a frame comoving with the traveling stripe forcing and
parts of the MOREC solutions travel slower and in a dif-
ferent direction according to equation (23) (see also the
discussion behind this equation).

There is a continuous transition between a MREC and
a MOREC, as shown analytically in Sections 4 and 5. This

is also confirmed by numerical simulations for qd = 0,
where the simulation has been started in the MREC range
of Figure 3 with a solution given by equation (19) and fol-
lowed by an continuous increase of the control parameter
up to the MOREC range in Figure 3.

Beyond the dash–dotted line in Figure 3, the MOREC
solutions are linearly stable for qd = 0 and by decreasing
the modulation amplitude G the amplitude of one of the
two modes Ai decreases too. While the MREC solutions
are locked to the traveling stripe forcing the MOREC be-
come more and more unlocked by decreasing the modula-
tion amplitude G, being in agreement with the analytical
results above.

6.2 General case qd �= 0

In the more general case we investigate the effects of a
deviation qd from the 2 : 1 ratio between the spontaneous
wavenumber qc and the modulation wavenumber 2km, i.e.
2km = 2(qc + q̂d). In this case one expects a richer variety
of solutions of equations (5), especially in the transition
range between MOREC and MREC solutions.

Solutions in the range of stable MREC in Figure 2

In the MREC range of Figure 2 the comoving and locked
rectangles, given by equations (19) and (20), are lin-
early stable. An example of this solution is shown in
Figures 5a, c and e for parameters corresponding to the
point S1 in Figure 2. Starting with random initial condi-
tions this analytical solution is always the attracting one in
the MREC parameter range in Figure 2. The correspond-
ing field u(x, y, t) has the wavenumber qc + (qd + Q)/ξ1
in x–direction and a wavenumber pc+P/ξ2 in y–direction
with Q = 0 and P = −aqd on the level of the ampli-
tude function Āi(x′, y′, t′), which is shown in Figure 5c.
In part (a) of this figure a section of a snapshot of this
MREC pattern is shown in terms of u(x, y, t). Part (e)
shows that the Fourier amplitudes of the two amplitudes
Ā1 and Ā2 of the MREC pattern have the same modulus.

Solutions in the range of stable MOREC in Figure 2

A MOREC pattern as given analytically by equation (21)
and by equation (23) has amplitudes Ā1,2(x′, y′) that are
periodic in y–direction with the wavenumber P = −aqd
and constant along the x–direction, i.e. Q = 0. This
pattern is also linearly stable in the range denoted by
MOREC in Figure 2. However, MORECs are only sta-
ble with respect to tiny perturbations. Starting in simu-
lations of equations (5) with a MOREC solution that is
superposed by larger, but still small perturbations, then
the MOREC pattern with wavenumber Q = 0, P = −aqd
becomes unstable and solutions with wavenumbers Q �= 0
and P �= −aqd are preferred, similar as for the example
shown in Figure 5d.

Starting a simulation of equations (5) with random ini-
tial conditions, long living transients occur that include a
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Fig. 5. The three parts (a), (c) and (e) describe a stable so-
lution in the MREC region, as obtained after starting simula-
tions with random initial conditions for the parameters a = 0.5,
b = 3, qd = 0.2, ν = 0.6, G = 0.8, ε = −0.3. Part (c) shows
the sum Re(Ā1 + Ā2), which is periodic in y-direction with a
wavenumber P = −aqd. Part (e) is the power spectrum of it
and in part (a) a snapshot of this MREC is given in terms
of ui(x, y, t) with pc = qc/4, cf. equation (20). Parts (b), (d)
and (f) give the respective results for a MOREC solution af-
ter starting with random initial conditions for modified val-
ues ε = 0.8 and G = 0.7. Part (d) shows the real part of
Ā1 + Ā2, part (f) the power spectrum of it and the top part
gives ui(x, y, t) according to equation (23) with pc = qc/2.

larger number of defects, where most of them are anni-
hilated in the course of time. Such a transient is shown
in Figure 6, which includes two remaining defects. Near
the defects, the typical MOREC pattern of oblique rolls
with a superimposed rectangular structure is deformed by
a kind of interstitial lattice line with endpoints at the two
defects. Both defects will annihilate each other soon af-
ter the snapshot in Figure 6 and finally a state of oblique
stripes is reached, similar to that one given in Figure 5d,
but now with |Q| ∼ 0.3 and |P | ∼ 0.1. It is remarkable
that |Q| ∼ 0.3 is larger than the detuning qd.

After starting with random initial conditions in the
MOREC range of Figure 2 our simulations never termi-
nate in a final state with wavenumber Q = 0, P = −aqd
for the MOREC solution. Obviously, states with finite
wavenumbers Q �= 0 and P �= −aqd, where the specific
values of Q and P depend on the parameters, have a much
larger basin of attraction than the analytical MOREC so-
lution with Q = 0, P = −aqd. The moduli of the two

Fig. 6. The left part shows Re(Ā1 + Ā2) for a transient state
including a defect pair that is obtained in simulations started
with random initial conditions and for parameters correspond-
ing to the point S3 in the MOREC range in Figure 2, i.e.
a = 0.5, b = 3, qd = 0.2, ν = 0.6, G = 0.7, ε = 0.8. In the right
part a component of the corresponding real field u(x, y, t) is
plotted in the neighborhood of the defect pair with pc = qc/2.

amplitudes A1 and A2 of such a MOREC solution differ
remarkably for the parameters used for example in Fig-
ure 5d, as indicated in part (f) of the same figure.

In the region of linearly stable MOREC solutions in
Figure 2, solutions that include domain walls also per-
sist over a long time. Often there are pairs of straight
domain walls parallel to the y–direction that propagate
in terms of Ā1,2 slowly in the x–direction. A transforma-
tion to the spatially periodic pattern u(x, y, t) changes the
phase velocity of the periodic pattern, but the velocity of
the domain wall is the same in both representations. For
example for a modulation amplitude of G = 0.4, a con-
trol parameter ε = 0.4 and all other parameters as in the
right part of Figure 5, a simulation resulted in a state of
the system with two nearly equally sized domains, where
the domain boundaries are parallel to the y–direction and
move in x–direction with a velocity of about 10% of the
forcing velocity vp = ν̂/(qc+q̂d) in unscaled units that cor-
responds in our example with ξ1 = 1 and τ0 = 1 also to the
velocity in scaled units of length and time v′p = ν/(qc+qd).
There are also solutions with domain walls parallel to the
x–direction, but without any evidence for a movement of
the domain walls perpendicular to their orientation.

Nonlinear solutions in region I of Figure 2

The MREC solution as given by equation (19) and with
the wavenumber Q = 0 and P = −aqd is linearly un-
stable in range I of Figure 2. Starting in this range nu-
merical simulations of equations (5) with random initial
conditions one usually reaches states that include at in-
termediate stages domain walls as shown for example in
Figure 7. Such domain walls move perpendicular to their
orientation and very surprisingly, the propagation veloc-
ity of this domain wall in Figure 7 propagates 1.2 times as
fast as the velocity vp of the traveling forcing. Remember
that we have with ξ1 = 1 and τ0 = 1 the same velocity
in scaled and unscaled units v = ξ1/τ0 v

′ = 1.2vp. During
the course of time such domain walls as shown in Figure 7
may annihilate each other and the final state may consist
of oblique stripes, similar as in Figure 5d.
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Fig. 7. The left part shows Re(Ā1 + Ā2) as obtained by simu-
lations of equations (5) after starting with random initial con-
ditions for parameters at the point S2 in Figure 2, i.e. a = 0.5,
b = 3, qd = 0.2, ν = 0.6, G = 0.8, ε = 0.3. The right part shows
ui(x, y, t) in a region near the lower left corner of the system
including the two domain walls. This pattern is an interme-
diate transient that evolves further to a rather stable zig-zag
pattern shown in Figure 8a.

Fig. 8. The figure shows Re(Ā1 + Ā2) of two stable solutions
obtained in simulations for the same parameters as in Fig-
ure 7 but in part (b) for a different initial solution. The result-
ing zig-zag like final state in (b) has evolved from a slightly
perturbed and inclined stripe pattern with the wave vector
(Q,P ) = (0.05,−0.1), whereas the pattern in part (a) evolved
from that in Figure 7.

Sometimes one may end up with a stable final state
that is composed of two regions with different stripe ori-
entations, similar to that in Figure 7. However, more often
patterns as in Figure 7 occur only as a transient on the
route to other stable complex patterns that are similar in
the long time limit to the two examples in Figure 8. In
both examples the domains move with a velocity of about
1.5 vp also faster than the periodic forcing.

One component of the field u(x, y, t), corresponding
to the stable solution in Figure 8a, is shown in Figure 9,
whereby pc = qc/2 has been used during the transforma-
tion. The snapshot in Figure 9 covers the lower half of the
area shown in Figure 8a. Similar to the case of the stable
MREC solutions, the nearly horizontal stripes in the am-
plitude representation in Figure 8a generate a MREC–like
pattern for the u–field. Due to the small deviation from
exact horizontal stripes in Figure 8a, these are not perfect
rectangles and they are slightly inclined. In the bulk of
the horizontally striped region, the wave vectors and the
phase velocity of the u–field nearly coincides with that of
the exact MREC solutions.

The vertical striped range in Figure 8a transforms into
a MOREC–like structure for the u–field, whose velocity

Fig. 9. The figure shows ui(x, y, t) in a range corresponding
to the lower half of the system shown in Figure 8a.

differs from that of the MREC–like pattern. As mentioned
above, the boundaries of this MOREC–like region move
synchronous with a larger velocity in x–direction than the
inclined rectangles that are locked to the phase velocity of
the periodic forcing.

For the parameters as in Figure 7, the time evolution
of the spatially averaged quadratic modulus of the ampli-
tudes,

∫
dx′dy′ |Ai(x′, y′, t′)|2, is shown in Figure 10a. At

the time marked with c in Figure 10a the snapshot that
is shown in Figure 7 has been taken. This averaged quan-
tity

∫
dx′dy′ |Ai(x′, y′, t′)|2 is a measure for the global

dynamics of a pattern and for the parameters as used in
Figures 7 and 8 it becomes constant for long times, as
can be seen in Figure 10a. The pattern corresponding to
this constant behavior at this plateau in Figure 10a is the
zig-zag pattern shown in the left part of Figure 8. This
constant behavior is a strong indication for the surprising
stability of the zig-zag pattern in Figure 8a. In the case
of a static forcing, this pattern is unstable, i.e. it is only
stabilized in region I by a finite forcing velocity. Actually,
the simulations shown in Figure 10a have been continued
up to t′ = 8× 104 without any change of the constant be-
havior of

∫
dx′dy′ |Ai(x′, y′, t′)|2 for the zig-zag pattern.

The time evolution of |A1(x′0, y
′
0, t

′)|2 at a fixed spatial
point (x′0, y′0) is shown in part (b) and part (c) of Fig-
ure 10 at the times marked by b and c in part (a) of the
same figure. Both curves indicate that the overall period-
icity is determined by the propagating velocity of one of
the domain walls. However, while the signal in Figure 10c,
corresponding to the pattern in Figure 7, is already nearly
periodic, the signal in Figure 10b, corresponding to a tran-
sient predecessor, shows stronger deviations from period-
icity. This local signal shows a perfect periodicity for the
zig-zag patterns in Figure 8a. The fact that one has a peri-
odic behavior of |A1(x′0, y′0, t′)|2, but a time–independent
behavior in Figure 10a at long times, confirms that the
pattern in Figure 8a moves as a whole everywhere with
the same velocity and that it is stable. The periodic be-
havior of the local signal |A1(x′0, y′0, t′)|2 as well as the
constant behavior of

∫
dx′dy′ |Ā1(x′, y′, t′)|2 for the pat-

tern in Figure 8a depends very much on the used periodic
boundary conditions. For completeness it should be men-
tioned that the lifetime of the transient state of domain
walls grows with the system size.

Instead of starting with a random initial solution, one
can directly start with oblique stripe solutions, slightly
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Fig. 10. Part (a) shows the time evolution of the spa-
tially averaged amplitudes

∫
dx′dy′ |A1(x

′, y′, t′)|2 (black) and∫
dx′dy′ |A2(x

′, y′, t′)|2 (gray). Close to the two times marked
in part (a) by (b) and (c) the time–dependence of the squared
modulus |Ā1(x

′
0, y

′
0, t

′)|2 of each propagating pattern is shown
in part (b) and part (c). The state in Figure 7 corresponds to
the state in part (a) marked by (c). The pattern corresponding
to the plateau at large times in part (a) is the zig-zag pattern
in Figure 8a.

disturbed by adding a small random perturbation, and
test their stability. In this case, the simulations show that
only solutions with a not too small x-component Q of the
wave vector will remain stable. For a starting solution with
e.g. Q = 0.05 and P = −0.1 the right part of Figure 8
shows the resulting final state of the system. This state
did not show further changes even in rather long lasting
simulations and can also be considered as a stable pattern.

Many simulations in the region I suggest, that the fi-
nal state is not unique and it depends very much on the
initial conditions, as for instance the difference of the two
patterns in Figure 8 shows. The difference between two
final states resulting from two different realizations of the
initial conditions may be even more drastic.

In region I in Figure 2, the system may also end up in
a state of two equally spaced domains with walls parallel
to the y-direction, filled with oblique stripes of different
wave vectors, or in a pure state of oblique stripes.

Nonlinear solutions in the range II of Figure 2

Simulations starting with a slightly perturbed MOREC
solution, cf. equation (21), as initial solution confirm the
instability of these solutions in region II of the phase dia-
gram in Figure 2. Starting with random initial conditions
one often terminates in a state with two moving domain
walls, which separate regions of oblique stripes, similar as
in Figure 7a. In contrast to the case of unstable MREC
solutions, here the width of these domains remains always
constant and this state including domain walls is a stable
one in this region. Furthermore, stable final states consist-
ing of one type of oblique stripes in terms of Ā(x′, y′, t′)
are also possible. More complex stable patterns similar to
that in in Figure 8 found in region I of Figure 2, have not
been seen in region II.

7 Summary and conclusions

In this work we have generalized an earlier investigation
about the effects of spatially periodic static forcing on
a stationary bifurcation to an oblique stripe pattern in
anisotropic systems, cf. references [7,8]. Here we inves-
tigate, how a propagating spatially periodic forcing, as
given by equation (1), acts on the bifurcation to oblique
stripes. For this we have restricted our study to a forc-
ing wavenumber 2km in x–direction, which is roughly two
times as large as the wavenumber qc in x–direction of
the pattern, i.e. 2km = 2(qc + q̂d). This corresponds to
a 2 : 1 resonance, but allows a small detuning q̂d.

For fairly large modulation amplitudes we found at
threshold moving rectangles (MREC), a snapshot of them
is given in Figure 4. The MREC solution is locked to the
forcing and propagates with the velocity of the periodic
forcing along the x–direction, vp = ν̂/(qc+ q̂d). If the con-
trol parameter is increased further beyond threshold or
if the velocity of the forcing is increased, a MREC pat-
tern becomes unstable. If the wavenumber detuning q̂d
vanishes, there is a continuous transition to a moving su-
perposition of rectangles and oblique stripes (MOREC),
whereby in this case the propagation velocity does not co-
incide anymore with the forcing velocity. Moreover, with
increasing values of the control parameter or decreasing
values of the modulation amplitude, the propagation ve-
locity of the MOREC decreases continuously.

For a finite detuning q̂d �= 0 interesting and new stable
complex patterns occur in the transition regime between
MREC and MOREC patterns. These are for instance pat-
terns that include stable domain walls or patterns where
domain walls are coming and going during long lasting
transients, which may finally terminate in periodic pat-
terns but with Q,P �= 0. Or they relax, especially in the
range I of Figure 2, to zig–zag patterns such as shown for
example in Figure 8. Zig-zag pattern of this type are very
stable, as indicated in Figure 10, but they are unstable
outside the range I in Figure 2 and they are also unstable
for nonpropagating spatially periodic forcing. Therefore,
such zig–zag patterns are a characteristic response behav-
ior of oblique rolls with respect to a nearly 2 : 1 resonant



600 The European Physical Journal B

traveling forcing. Moreover, and an even more surprising
behavior is the propagation velocity of such zig–zag do-
mains. They propagate for the parameters as chosen in
Figure 8 about 1.5 times as fast as the propagating stripe
forcing.

The patterns as well as the various transition scenarios
as described in this work are expected to be observable in
experiments similar as in references [9,21] with a material
as used in reference [23]. In spiral vortex flow [30–34] one
has also two degenerated states at threshold with respect
to a preferred direction. However, these are propagating
states and are described by amplitude equations with com-
plex coefficient [37]. Nevertheless a spatial periodic mod-
ulation in the direction parallel to the cylinder axis may
give rise to similar and other interesting scenarios to be
investigated in the future.

Interesting discussions with M. Hilt and F. Ziebert are very
much appreciated.
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